Tandem atmospheric-pressure plasma system consisting of ‘reactive’ and ‘dusty’ plasmas studied to reveal nature of electron depletion (Abuyazid et al., PSST, 2020).

S. Bhattacharya, T. Liu, Z. Ye, R. He, and R. M. Sankaran, “Synthesis of large-area MoS2 films by plasma-enhanced chemical film conversion of solution-processed ammonium tetrathiomolybdate,” J. Vac. Sci. Technol. A 38, 063006 (2020). https://doi.org/10.1116/6.0000599

T. Gallingani, N. H. Abuyazid, V. Colombo, M. Gherardi, and R. M. Sankaran, “Online ion mobility spectrometry of nanoparticle formation by non-thermal plasma conversion of metal salts in liquid aerosol droplets,” J. Aerosol Sci. 150, 105631 (2020). https://doi.org/10.1016/j.jaerosci.2020.105631

M. ElKabbash, K. V. Sreekanth, A. Fraiwan, J. Cole, Y. Alapan, T. Letsou, N. Hoffman, C. L. Guo, R. M. Sankaran, U. A. Gurkan, M. Hinczewski, and G. Strangi, “Ultrathin-film optical coating for angle-independent remote hydrogen sensing,” Meas. Sci. Technol. 31, 115201 (2020). https://doi.org/10.1088/1361-6501/ab9fd8

J. R. Toth, N. H. Abuyazid, D. J. Lacks, J. N. Renner, and R. M. Sankaran, “A plasma-water droplet reactor for process-intensified, continuous nitrogen fixation at atmospheric pressure,” ACS Sustain. Chem. Eng. 8, 14845-14854 (2020). https://doi.org/10.1021/acssuschemeng.0c04432

Y. Sui, A. Hess-Dunning, R. M. Sankaran, and C. A. Zorman, “Inkjet-printed hydrogen peroxide sensor with sensitivity enhanced by plasma activated inorganic metal salt inks,” J. Microelectromech. Syst. 29, 1026-1031, (2020). https://doi.org/10.1109/JMEMS.2020.3010371

S. Dhawan, A. Vidwans, G. Sharma, N. H. Abuyazid, R. M. Sankaran, and P. Biswas, “Enhancing charging and capture efficiency of aerosol nanoparticles using an atmospheric-pressure, flow-through RF plasma with a downstream DC bias,” Aerosol Sci. Technol. 54, 1249-1254 (2020). https://doi.org/10.1080/02786826.2020.1807459

N. H. Abuyazid, X. S. Chen. D. Mariotti, P. Maguire, C. J. Hogan, and R. M. Sankaran, “Understanding the depletion of electrons in dusty plasmas at atmospheric pressure,” Plasma Sources Sci. Technol. 29, 075011 (2020). https://doi.org/10.1088/1361-6595/ab9cc3

G. Akay, K. Zhang, W. S. S. Al-Harrasi, and R. M. Sankaran, “Catalytic plasma Fischer-Tropsch synthesis using hierarchically connected porous Co/SiO2 catalysts prepared by microwave-induced co-assembly,” Ind. Eng. Chem. Res. 59, 12013-12027 (2020). https://doi.org/10.1021/acs.iecr.0c01585

G. Sharma, N. H. Abuyazid, S. Dhawan, S. Kshirsagar, R. M. Sankaran, and P. Biswas, “Characterization of particle charging in low-temperature, atmospheric-pressure, flow-through plasmas,” J. Phys. D 53, 245204 (2020). https://doi.org/10.1088/1361-6463/ab7c97

Y. Sui, C. A. Zorman, and R. M. Sankaran, “Plasmas for additive manufacturing,” Plasma Proc. Poly. 17, e2000009 (2020). https://doi.org/10.1002/ppap.202000009

C. Heinert, R. M. Sankaran, and D. J. Lacks, “Electrostatic charge generation on material surfaces from the evaporation of liquids,” J. Electrostat. 105, 103450 (2020). https://doi.org/10.1016/j.elstat.2020.103450

J. R. Toth, S. Rajupet, H. Squires, B. Volbers, J. Zhou, L. Xie, R. M. Sankaran, and D. J. Lacks, “Electrostatic forces alter particle size distributions in atmospheric dust,” Atmos. Chem. Phys. 20, 3181-3190 (2020). https://doi.org/10.5194/acp-20-3181-2020

J. R. Toth, R. Hawtof, D. Matthiesen, J. N. Renner, and R. M. Sankaran, “On the non-faradaic hydrogen gas evolution from electrolytic reactions at the interface of a cathodic atmospheric-pressure microplasma and liquid water surface,” J. Electrochem. Soc. 167, 116504 (2020). https://doi.org/10.1149/1945-7111/aba15c

W-H. Chiang, D. Mariotti, R. M. Sankaran, J. G. Eden, and K. Ostrikov, “Microplasmas for advanced materials and devices,” Adv. Mater. 32, 1905508 (2020). https://doi.org/10.1002/adma.201905508